If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-21x^2+16x-3=0
a = -21; b = 16; c = -3;
Δ = b2-4ac
Δ = 162-4·(-21)·(-3)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2}{2*-21}=\frac{-18}{-42} =3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2}{2*-21}=\frac{-14}{-42} =1/3 $
| 21x^2+16x-3=0 | | 16x+41=-7 | | -16x+41=7 | | 3^5x-2=81^x-1 | | 3⁵x-2=81^x-1 | | -49t^2+147t=0 | | 6(-6p+1)=2(-7p-30) | | P=12+(5d)/9 | | 1x+2=-2+5 | | 3x-5(x-4)=-4+5x-12 | | f=-3(3)^(2)+5(3)+1 | | 6n/n-1=25/n | | 480/x-480-480/x=10 | | 12+1/6x=17-2/3x | | 12+1/6=17-2/3x | | 12+1/6x=17-23x | | 12+1/6x=17-2/3 | | 10+((a^2)/9)=16 | | 10+a^2/9=16 | | 8y+10+5y=28 | | 1/3x+2=37/9x | | 7.5/x=3/5 | | 40×(9+b)=+ | | -8(3x+2)=4 | | -8(3x+2)=5 | | 27.8/25=x | | 9(y-3)=72 | | 5+(-4)+12.65=a | | 7=D4d-2+d | | 3^3x+9=10×3^x | | D=74d-2+d | | 3x+3x+8=48 |